Zinc Oxide—From Synthesis to Application: A Review - MDPI

PDF Downloads : Oriental Journal of Chemistry

International Journal of Nanomedicine - Dove Press

The magneticproperties characterized by Vibrating Sample Magnetometer (VSM) at roomtemperature proved that the assynthesized nickel ferrite nanoparticlesare ferromagnetic and the saturation magnetization (Ms)increases with the content of Fe in the sample.

Journal of Alloys and Compounds - Elsevier

Nanosized nickel ferrite particles were synthesized with and without surfactant assisted hydrothermal methods. The FT-IR spectra showed two characteristic metal oxygen vibrational bands. The average particle size of samples was in the range of 12-53 nm, as revealed by XRD and TEM techniques. The temperature rise up to 150°C led to the increasing of crystallinity of nanoparticles. In the presence of surfactants, the crystallinity of NiFe2O4 nanoparticles decreased in comparison with surfactant- free prepared samples. All of the nickel ferrite nanoparticles were superparamagnetic at room temperature. The saturation magnetization and coercivity values were found to be low, which attributed to the various parameters such as crystallinity and particle size. The saturation magnetization and coercivity were reduced with decreasing of crystallinity and particle size of nanoparticles.

Nanosized nickel ferrite particles were synthesized with and without surfactant assisted hydrothermal methods. The results show that with increasing of temperature, the crystallinity of nanoparticles is increased. In the presence of surfactants, the crystallinity of NiFe2O4 nanoparticles decreased in comparison with surfactant- free prepared samples. All of the nickel ferrite nanoparticles were superparamagnetic at room temperature.