## Support or Reject Null Hypothesis

Photo provided by Pexels

### 1. Testing of hypothesis on the variance of two normal populations.

In the olden days, when people looked up *P* values in printed tables, they would report the results of a statistical test as "*P**P**P*>0.10", etc. Nowadays, almost all computer statistics programs give the exact *P* value resulting from a statistical test, such as *P*=0.029, and that's what you should report in your publications. You will conclude that the results are either significant or they're not significant; they either reject the null hypothesis (if *P* is below your pre-determined significance level) or don't reject the null hypothesis (if *P* is above your significance level). But other people will want to know if your results are "strongly" significant (*P* much less than 0.05), which will give them more confidence in your results than if they were "barely" significant (*P*=0.043, for example). In addition, other researchers will need the exact *P* value if they want to combine your results with others into a .

Photo provided by Flickr

### Use the following formula to calculate your test value.

The primary goal of a statistical test is to determine whether an observed data set is so different from what you would expect under the null hypothesis that you should reject the null hypothesis. For example, let's say you are studying sex determination in chickens. For breeds of chickens that are bred to lay lots of eggs, female chicks are more valuable than male chicks, so if you could figure out a way to manipulate the sex ratio, you could make a lot of chicken farmers very happy. You've fed chocolate to a bunch of female chickens (in birds, unlike mammals, the female parent determines the sex of the offspring), and you get 25 female chicks and 23 male chicks. Anyone would look at those numbers and see that they could easily result from chance; there would be no reason to reject the null hypothesis of a 1:1 ratio of females to males. If you got 47 females and 1 male, most people would look at those numbers and see that they would be extremely unlikely to happen due to luck, if the null hypothesis were true; you would reject the null hypothesis and conclude that chocolate really changed the sex ratio. However, what if you had 31 females and 17 males? That's definitely more females than males, but is it really so unlikely to occur due to chance that you can reject the null hypothesis? To answer that, you need more than common sense, you need to calculate the probability of getting a deviation that large due to chance.

Photo provided by Flickr

Sometimes, you’ll be given a proportion of the population or a percentage and asked to support or reject null hypothesis. In this case you can’t compute a test value by calculating a (you need actual numbers for that), so we use a slightly different technique.

Photo provided by Flickr

## If Z(critical) = 2.04, what is the p-value for your test?

This criticism only applies to two-tailed tests, where the null hypothesis is "Things are exactly the same" and the alternative is "Things are different." Presumably these critics think it would be okay to do a one-tailed test with a null hypothesis like "Foot length of male chickens is the same as, or less than, that of females," because the null hypothesis that male chickens have smaller feet than females could be true. So if you're worried about this issue, you could think of a two-tailed test, where the null hypothesis is that things are the same, as shorthand for doing two one-tailed tests. A significant rejection of the null hypothesis in a two-tailed test would then be the equivalent of rejecting one of the two one-tailed null hypotheses.

## Test at ALPHA=.05 the hypothesis that the true weight is 140 lb.

A fairly common criticism of the hypothesis-testing approach to statistics is that the null hypothesis will always be false, if you have a big enough sample size. In the chicken-feet example, critics would argue that if you had an infinite sample size, it is impossible that male chickens would have *exactly* the same average foot size as female chickens. Therefore, since you know before doing the experiment that the null hypothesis is false, there's no point in testing it.

## rejecting the null hypothesis when the alternative is true.

If the null hypothesis were true (i.e., no change from the prior year) we would have expected more students to fall in the "No Regular Exercise" category and fewer in the "Regular Exercise" categories. In the sample, 255/470 = 54% reported no regular exercise and 90/470=19% reported regular exercise. Thus, there is a shift toward more regular exercise following the implementation of the health promotion campaign. There is evidence of a statistical difference, is this a meaningful difference? Is there room for improvement?

## not rejecting the null hypothesis when the alternative is true.

In the χ^{2} goodness-of-fit test, we conclude that either the distribution specified in H_{0} is false (when we reject H_{0}) or that we do not have sufficient evidence to show that the distribution specified in H_{0} is false (when we fail to reject H_{0}). Here, we reject H_{0} and concluded that the distribution of responses to the exercise question following the implementation of the health promotion campaign was not the same as the distribution prior. The test itself does not provide details of how the distribution has shifted. A comparison of the observed and expected frequencies will provide some insight into the shift (when the null hypothesis is rejected). Does it appear that the health promotion campaign was effective?