## "Optimization, Learning and Natural Algorithms", ..

### We optimization learning and natural algorithms phd thesis to …

This course will provide a rigorous and hands-on introduction to the central ideas and algorithms that constitute the core of the modern algorithms toolkit. Emphasis will be on understanding the high-level theoretical intuitions and principles underlying the algorithms we discuss, as well as developing a concrete understanding of when and how to implement and apply the algorithms. The course will be structured as a sequence of one-week investigations; each week will introduce one algorithmic idea, and discuss the motivation, theoretical underpinning, and practical applications of that algorithmic idea. Each topic will be accompanied by a mini-project in which students will be guided through a practical application of the ideas of the week. Topics include hashing, dimension reduction and LSH, boosting, linear programming, gradient descent, sampling and estimation, and an introduction to spectral techniques. Prerequisites: CS107 and CS161, or permission from the instructor.

### Optimization, Learning and Natural Algorithms, PhD thesis, ..

Artificial intelligence (AI) has had a huge impact in many areas, including medical diagnosis, speech recognition, robotics, web search, advertising, and scheduling. This course focuses on the foundational concepts that drive these applications. In short, AI is the mathematics of making good decisions given incomplete information (hence the need for probability) and limited computation (hence the need for algorithms). Specific topics include search, constraint satisfaction, game playing, Markov decision processes, graphical models, machine learning, and logic. Prerequisites: or CS 103B/X, or , , and (algorithms, probability, and programming experience).

Over the past decade there has been an explosion in activity in designing new provably efficient fast graph algorithms. Leveraging techniques from disparate areas of computer science and optimization researchers have made great strides on improving upon the best known running times for fundamental optimization problems on graphs, in many cases breaking long-standing barriers to efficient algorithm design. In this course we will survey these results and cover the key algorithmic tools they leverage to achieve these breakthroughs. Possible topics include but are not limited to, spectral graph theory, sparsification, oblivious routing, local partitioning, Laplacian system solving, and maximum flow. Prerequisites: calculus and linear algebra.

Same as: MS&E 313

## A Tour Of Machine Learning Algorithms

Algorithms for network optimization: max-flow, min-cost flow, matching, assignment, and min-cut problems. Introduction to linear programming. Use of LP duality for design and analysis of algorithms. Approximation algorithms for NP-complete problems such as Steiner Trees, Traveling Salesman, and scheduling problems. Randomized algorithms. Introduction to online algorithms. Prerequisite: 161 or equivalent.

## Artificial intelligence - Wikipedia

Introduction to the theory of error correcting codes, emphasizing algebraic constructions, and diverse applications throughout computer science and engineering. Topics include basic bounds on error correcting codes; Reed-Solomon and Reed-Muller codes; list-decoding, list-recovery and locality. Applications may include communication, storage, complexity theory, pseudorandomness, cryptography, streaming algorithms, group testing, and compressed sensing. Prerequisites: Linear algebra, basic probability (at the level of, say, CS109, CME106 or EE178) and "mathematical maturity" (students will be asked to write proofs). Familiarity with finite fields will be helpful but not required.

Same as:

## Particle Swarm Optimization: Bibliography

Availability of massive datasets is revolutionizing science and industry. This course discusses data mining and machine learning algorithms for analyzing very large amounts of data. The focus is on algorithms and systems for mining big data. nTopics include: Big data systems (Hadoop, Spark, Hive); Link Analysis (PageRank, spam detection, hubs-and-authorities); Similarity search (locality-sensitive hashing, shingling, minhashing, random hyperplanes); Stream data processing; Analysis of social-network graphs; Association rules; Dimensionality reduction (UV, SVD, and CUR decompositions); Algorithms for very-large-scale mining (clustering, nearest-neighbor search); Large-scale machine learning (gradient descent, support-vector machines, classification, and regression); Submodular function optimization; Computational advertising. Prerequisites: At least one of CS107 or CS145.

## Computer Science | Stanford University

Intelligent computer agents must reason about complex, uncertain, and dynamic environments. This course is a graduate level introduction to automated reasoning techniques and their applications, covering logical and probabilistic approaches. Topics include: logical and probabilistic foundations, backtracking strategies and algorithms behind modern SAT solvers, stochastic local search and Markov Chain Monte Carlo algorithms, variational techniques, classes of reasoning tasks and reductions, and applications.