Ketone Body and Cholesterol Biosynthesis Flashcards | …

Ketone-body synthesis in relation to age of lambs.

Ketone-body synthesis in relation to age of ..

Fatty acid oxidation
Fatty acids have to be activated prior to their entry into mitochondrial matrix where the enzymes of β-oxidation of fatty acids are located. Activated fatty acids are then transported from cytosol to the mitochondrial matrix with the help of carnitine transporter. Total net yield of ATP per molecule of palmitic acid is 129. Similarly oxidation of unsaturated and odd chain fatty acids also take place with additional reactions. Β-oxidation in peroxisomes involves three enzymatic reactions. Minor pathways of oxidation such as α-oxidation of branched chain fatty acids and ω-oxidation of medium and long chain fatty acids in microsomes do take place in our body.

Ketone body metabolism
Ketone bodies are acetoacetate, β-hydroxy butyrate and acetone. Ketone bodies are synthesized in the liver but they are utilized by extra hepatic tissues as fuels. Ketone bodies are accumulated in the blood if the rate of synthesis exceeds the ability of extra hepatic tissues to utilize them. This leads to excess ketone bodies in blood, excretion of ketone bodies in urine and smell of acetone in breath. All these three together are known as ketosis. In uncontrolled diabetes mellitus and starvation, ketone bodies are formed.

Ketone body synthesis in the brain: possible neuroprotective effects

Lipids are digested and absorbed with the help of bile salts. Products of lipid digestion aggregate to form mixed micelles and are absorbed into the small intestine. Lipids are transported in the form of lipoproteins. Fatty acids are activated, transported across mitochondrial membrane with the help of carnitine transporter. β -oxidation of saturated fatty acids takes place in the mitochondrial matrix. Similarly oxidation of unsaturated and odd chain fatty acids also take place with additional reactions. Ketone bodies are formed in the liver but they are utilized by extra hepatic tissues. In uncontrolled diabetes mellitus and starvation, excessive ketone bodies are formed, leading to ketosis. Fatty acid biosynthesis takes place in the cytosol of cells. Fat gets deposited in the adipose tissue. Acetyl Coenzyme A is the precursor of fatty acid synthesis as well as cholesterol biosynthesis. Elevation of lipids in blood leads to deposition of cholesterol plaques in the arterial walls leading to atherosclerosis. Prostaglandins and leukotrienes are synthesized from twenty carbon unsaturated fatty acids. Phosphatidic acid is an important intermediate in the synthesis of glycerophospholipids. In sphingolipids, sphingosine is present as an alcohol.

Sources of Drugs: Biological, marine, mineral and plant tissue cultures as sources of drugs;
Classification of Drugs: Morphological, taxonomical, chemical and pharmacological classification of drugs; Study of medicinally important plants belonging to the families with special reference to: Apocynacae, Solanaceae, Rutacease, Umbelliferae, Leguminosae, Rubiaceae, Liliaceae, Graminae, Labiatae, Cruciferae, Papaveraceae; Cultivation, Collection, Processing and Storage of Crude Drugs: Factors influencing cultivation of medicinal plants, Types of soils and fertilizers of common use. Pest management and natural pest control agents, Plant hormones and their applications, Polyploidy, mutation and hybridization with reference to medicinal plants. Quality Control of Crude Drugs: Adulteration of crude drugs and their detection by organoleptic, microscopic, physical, chemical and biological methods and properties. Introduction to Active Constituents of Drugs: Their isolation, classification and properties.
Systematic pharmacognostic study of the followings:
CARBOHYDRATES and derived products: agar, guar gum acacia, Honey, Isabagol, pectin, Starch, sterculia and Tragacanth; Lipids: Bees wax, Castor oil, Cocoa butter, Codliver oil, Hydnocarpus oil, Kokum butter, Lard, Linseed oil, Rice, Bran oil, Shark liver oil and Wool fat; RESINS: Study of Drugs Containing Resins and Resin Combinations like Colophony, podophyllum, jalap, cannabis, capsicum, myrrh, asafoetida, balsam of Tolu, balsam of Peru, benzoin, turmeric, ginger;
TANNINS: Study of tannins and tannin containing drugs like Gambier, black catechu, gall and myrobalan;
VOLATILE OILS: General methods of obtaining volatile oils from plants, Study of volatile oils of Mentha, Coriander, Cinnamon, Cassia, Lemon peel, Orange peel, Lemon grass, Citronella, Caraway, Dill, Spearmint, Clove, Fennel, Nutmeg, Eucalyptus, Chenopodium, Cardamom, Valerian, Musk, Palmarosa, Gaultheria, Sandal wood; Phytochemical Screening: Preparation of extracts, Screening of alkaloids, saponins, cardenolides and bufadienolides, flavonoids and leucoanthocyanidins, tannins and polyphenols, anthraquinones, cynogenetic glycosides, amino acids in plant extracts; FIBERS: Study of fibers used in pharmacy such as cotton, silk, wool, nylon, glass-wool, polyester and asbestos.
Study of the biological sources, cultivation, collection, commercial varieties, chemical constituents, substitutes, adulterants, uses, diagnostic macroscopic and microscopic features and specific chemical tests of following groups of drugs:
GLYCOSIDE CONTAINING DRUGS: Saponins : Liquorice, ginseng, dioscorea, sarsaparilla, and senega. Cardioactive glycosides: Digitalis, squill, strophanthus and thevetia, Anthraquinone cathartics: Aloe, senna, rhubarb and cascara, Others: Psoralea, Ammi majus, Ammi visnaga, gentian, saffron, chirata, quassia.
ALKALOID CONTAINING DRUGS: Pyridine-piperidine: Tobacco, areca and lobelia. Tropane: Belladonna, hyoscyamus, datura, duboisia, coca and withania. Quinoline and Isoquinoline: Cinchona, ipecac, opium. Indole: Ergot, rauwolfia, catharanthus, nux-vomica and physostigma. Imidazole: Pilocarpus. Steroidal: Veratrum and kurchi. Alkaloidal Amine: Ephedra and colchicum. Glycoalkaloid: Solanum. Purines: Coffee, tea and cola. Biological sources, preparation, identification tests and uses of the following enzymes: Diastase, papain, pepsin, trypsin, pancreatin. Studies of Traditional Drugs: Common vernacular names, botanical sources, morphology, chemical nature of chief constituents, pharmacology, categories and common uses and marketed formulations of following indigenous drugs: Amla, Kantkari, Satavari, Tylophora, Bhilawa, Kalijiri, Bach, Rasna, Punamava, Chitrack, Apamarg, Gokhru, Shankhapushpi, Brahmi, Adusa, Atjuna, Ashoka, Methi, Lahsun, Palash, Guggal, Gymnema, Shilajit, Nagarmotha and Neem. The holistic concept of drug administration in traditional systems of medicine. Introduction to ayurvedic preparations like Arishtas, Asvas, Gutikas, Tailas, Chumas, Lehyas and Bhasmas.
General Techniques of Biosynthetic Studies and Basic Metabolic Pathways/Biogenesis: Brief introduction to biogenesis of secondary metabolites of pharmaceutical importance. Terpenes: monoterpenes, sesquiterpenes, diterpenes, and triterpenoids. Carotenoids: a-carotenoids, ß-carotenes, vitamin A, Xanthophylls of medicinal importance. Glycosides: Digitoxin, digoxin, hecogenin, sennosides, diosgenin and sarasapogenin. Alkaloids: Atropine and related compounds, Quinine, Reserpine, Morphine, Papaverine, Ephedrine, Ergot and Vinca alkaloids. Lignans, quassanoids and flavonoids. Role of plant-based drugs on National economy: A brief account of plant based industries and institutions involved in work on medicinal and aromatic plants in India. Utilization and production of phyto-constituents such as quinine, calcium sennosides, podophyllotoxin, diosgenin, solasodine, and tropane alkaloids. Utilization of aromatic plants and derived products with special reference to sandalwood oil, mentha oil, lemon grass oil, vetiver oil, geranium oil and eucalyptus oil. World-wide trade in medicinal plants and derived products with special reference to diosgenin (disocorea), taxol (Taxus sps) digitalis, tropane alkaloid containing plants, Papain, cinchona, Ipecac, Liquorice, Ginseng, Aloe, Valerian, Rauwolfia and plants containing laxatives. Plant bitters and sweeteners. Plant Tissue Culture: Historical development of plant tissue culture, types of cultures, nutritional requirements, growth and their maintenance. Applications of plant tissue culture in pharmacognosy. Marine pharmacognosy: Novel medicinal agents from marine sources. Natural allergens and photosensitizing agents and fungal toxins. Herbs as health foods. Herbal cosmetics. Standardization and quality control of herbal drugs, WHO guidelines for the standardization of herbal drugs.

Ketone body metabolism Ketone bodies are acetoacetate, ..

20. Concerning Lofata Burne: Explain why medium chain acyl CoA (MCAD) deficiency would cause a decrease in ketone body synthesis during a fast. Also, from an energy point of view, explain why MCAD deficiency would increase the utilization of blood glucose by most tissues of the body and why gluconeogenesis in the liver is less than expected.

Regulation of Ketone Body Metabolism and the Role ..

21. Concerning Di Abietes, who suffers from Type I diabetes, what is the cause of her disease? What effect does this have upon blood concentrations of glucagon, catecholamines, and cortisol? What effect do these hormones have upon fatty acid mobilization from adipose tissue? What effect does low insulin and high glucagon have upon fatty acyl CoA entrance into liver mitochondria? What is the effect upon B-oxidation? What effect does this have upon ketone body synthesis? What effect does this have upon blood pH?

as well as ketone body biosynthesis ..

13. What happens to the blood levels of fatty acids, glucose, and ketone bodies during an extended fast? Explain how the use of ketone bodies by the brain spares muscle protein.