What Is a Scientific Hypothesis? | Definition of Hypothesis

Giant-impact hypothesis - Wikipedia

Hypothesis dictionary definition | hypothesis defined

CORRECTION: When newspapers make statements like, "most scientists agree that human activity is the culprit behind global warming," it's easy to imagine that scientists hold an annual caucus and vote for their favorite hypotheses. But of course, that's not quite how it works. Scientific ideas are judged not by their popularity, but on the basis of the evidence supporting or contradicting them. A hypothesis or theory comes to be accepted by many scientists (usually over the course of several years — or decades!) once it has garnered many lines of supporting evidence and has stood up to the scrutiny of the scientific community. A hypothesis accepted by "most scientists," may not be "liked" or have positive repercussions, but it is one that science has judged likely to be accurate based on the evidence. To learn more about , visit our series of pages on the topic in our section on how science works.

Journal of Articles in Support of the Null Hypothesis

Welcome to the Journal of Articles in Support of the Null Hypothesis

CORRECTION: This misconception likely stems from introductory science labs, with their emphasis on getting the "right" answer and with congratulations handed out for having the "correct" hypothesis all along. In fact, science gains as much from figuring out which hypotheses are likely to be wrong as it does from figuring out which are supported by the evidence. Scientists may have personal favorite hypotheses, but they strive to consider multiple hypotheses and be unbiased when evaluating them against the evidence. A scientist who finds evidence contradicting a favorite hypothesis may be surprised and probably disappointed, but can rest easy knowing that he or she has made a valuable contribution to science.

Evolution: Library: Hygiene Hypothesis - PBS

The subject of a scientific experiment has to be observable and reproducible. Observations may be made with the unaided eye, a microscope, a telescope, a voltmeter, or any other apparatus suitable for detecting the desired phenomenon. The invention of the telescope in 1608 made it possible for Galileo to discover the moons of Jupiter two years later. Other scientists confirmed Galileo's observations and the course of astronomy was changed. However, some observations that were not able to withstand tests of objectivity were the canals of Mars reported by astronomer Percival Lowell. Lowell claimed to be able to see a network of canals in Mars that he attributed to intelligent life in that planet. Bigger telescopes and satellite missions to Mars failed to confirm the existence of canals. This was a case where the observations could not be independently verified or reproduced, and the hypothesis about intelligent life was unjustified by the observations. To Lowell's credit, he predicted the existence of the planet Pluto in 1905 based on perturbations in the orbits of Uranus and Neptune. This was a good example of deductive logic. The application of the theory of gravitation to the known planets predicted that they should be in a different position from where they were. If the law of gravitation was not wrong, then something else had to account for the variation. Pluto was discovered 25 years later.

How to Plan and Write a Testable Hypothesis - wikiHow

CORRECTION: This misconception is based on the idea of falsification, philosopher Karl Popper's influential account of scientific justification, which suggests that all science can do is reject, or falsify, hypotheses — that science cannot find evidence that one idea over others. Falsification was a popular philosophical doctrine — especially with scientists — but it was soon recognized that falsification wasn't a very complete or accurate picture of how scientific knowledge is built. In science, ideas can never be completely proved or completely disproved. Instead, science accepts or rejects ideas based on supporting and refuting evidence, and may revise those conclusions if warranted by new evidence or perspectives.

13/09/2016 · How to Write a Hypothesis

CORRECTION: This misconception may be reinforced by introductory science courses that treat hypotheses as "things we're not sure about yet" and that only explore established and accepted theories. In fact, hypotheses, theories, and laws are rather like apples, oranges, and kumquats: one cannot grow into another, no matter how much fertilizer and water are offered. Hypotheses, theories, and laws are all scientific explanations that differ in breadth — not in level of support. Hypotheses are explanations that are limited in scope, applying to fairly narrow range of phenomena. The term is sometimes used to refer to an idea about how observable phenomena are related — but the term is also used in other ways within science. Theories are deep explanations that apply to a broad range of phenomena and that may integrate many hypotheses and laws. To learn more about this, visit our page on .

How the scientific method is used to test a hypothesis.

CORRECTION: Perhaps because the last step of the Scientific Method is usually "draw a conclusion," it's easy to imagine that studies that don't reach a clear conclusion must not be scientific or important. In fact, scientific studies don't reach "firm" conclusions. Scientific articles usually end with a discussion of the limitations of the tests performed and the alternative hypotheses that might account for the phenomenon. That's the nature of scientific knowledge — it's inherently tentative and could be overturned if new evidence, new interpretations, or a better explanation come along. In science, studies that carefully analyze the strengths and weaknesses of the test performed and of the different alternative explanations are particularly valuable since they encourage others to more thoroughly scrutinize the ideas and evidence and to develop new ways to test the ideas. To learn more about publishing and scrutiny in science, visit our discussion of .