20/03/2015 · Cobalt oxide nanoparticles is ..

In this work we explore the size-controlled synthesis of iron-oxide and cobalt ..
Photo provided by Pexels

Synthesis of ultra-small iron-oxide and cobalt ..

23. Kim BH, Lee N, Kim H, Am K, Park YI, Choi Y, Shin K, Lee Y, Kwon SG, Na HB, Park J-G, Ahn T-Y, Kim Y-W, Moon WK, Choi SH, Hyeon T. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution 1 magnetic resonance imaging contrast agents. 2011;133:12624-31

Iron Oxide, nanoparticle synthesis .

67. Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: Synthesis, physicochemical characterization, and experiments. 2005;16:1181-8

19. Narain R, Gonzales M, Hoffman AS, Stayton PS, Krishnan KM. Synthesis of monodisperse biotinylated p(NIPAAM)-coated iron oxide magnetic nanoparticles and their bioconjugation to streptavidin. 2007;23:6299-6304


Zinc Oxide—From Synthesis to Application: A Review - MDPI

CoPt nanoparticles were first obtained by simultaneous reduction of cobalt acetate and platinum acetylacetonate and then used as seeds for the growth upon them of cobalt oxide using a second polyol process.

Journal of Nanoscience and Nanotechnology

In another interesting work, Louie and coworkers have reported the synthesis of a reversible T2 contrast agent that is capable of modulating the relaxation time in response to light irradiation []. A spiropyran (SP) derivative that changes conformation between hydrophilic and hydrophobic isomers in response to light, has been covalently attached to dextran sulfate coated iron oxide nanoparticles (ADIO). The light induced reversible aggregation of MNPs has been found to modulate the T2 relaxation time (Figure ).

Nanoparticles Applications and Uses - UnderstandingNano

In summary, we have successfully synthesized cobalt sulphide/oxide nanoparticles in polymer matrix by facile solid-solid reaction technique. The formation of cubic structure Co3O4 and Co3S4 embedded in the PPS matrix was confirmed by XRD and HRTEM. This technique, being quite simple, can be used for preparation of nanocomposites for future generation smart materials. The polymer PPS being an engineering thermoplastic with inherent flame retardant characteristics can be molded as desired for advanced device fabrication.

PDF Downloads : Oriental Journal of Chemistry

The research on superparamagnetic iron oxide nanoparticles (SPIONs) has been growing exponentially over the last several years. The field continues to drive in the direction of biomedical applications, especially molecular therapeutics by exploiting the immense qualities of SPIONs []. This includes the distinctive controllable properties such as size, shape, magnetism, crystallinity and flexibility in fabricating multifunctional SPIONs with fluorescence, targeting ligands, drugs etc, thanks to the advancements in the syntheses and functionalization techniques developed hitherto. There are some excellent synthetic methods in prior arts on the formation of superparamagnetic magnetite (Fe3O4) and maghemite (γ-Fe2O3) SPIONs, with size control, narrow distribution, water solubility and surface functionalization [-]. The co-precipitation method is a conventional synthetic paradigm where Fe(II) and Fe(III) salts are co-precipitated in a basic solution in the presence of coating materials such as polymer or dextran (or its derivatives). Although the resulted iron oxide nanoparticles (NPs) are larger in size (ca. 100 nm) and partially crystalline, the particles are readily water soluble where their surfaces are directly functionalized. Alternatively, thermal decomposition method using precursors such as Fe(CO)5, Fe(Stearate)2, with high boiling solvents (octadecene, benzyl ether) and surfactants/ligands (oleic acid, oleylamine) can be used to synthesize smaller sized hydrophobic SPIONs (5-10 nm). In order to impart the SPIONs with water solubility for biomedical applications, water-oil microemulsion method can be employed as a reaction medium for coating a hydrophilic ligand (e.g. silica, peptides) on the hydrophobic surface.

Hua Zhang - Nanyang Technological University, Singapore

The obtaining of ZnO nanopowders by the sol-gel method is the subject of much interest, in view of the simplicity, low cost, reliability, repeatability and relatively mild conditions of synthesis, which are such as to enable the surface modification of zinc oxide with selected organic compounds. This changes in properties and extends its range of applications. The favourable optical properties of nanoparticles obtained by the sol-gel method have become a common topic of research, as reflected in numerous scientific publications []. shows two examples of synthesis by the sol-gel method: films from a colloidal sol (), and powder from a colloidal sol transformed into a gel ().