KS3 biology Quiz on "PLANTS and PHOTOSYNTHESIS" …

The Process of Photosynthesis in Plants: An Overview

How Does Color Spectrum Affect Growing Marijuana Plants?

At this juncture, I will ask my readers to perform an exercise that I first saw described by Peak Oil advocate , which is to lay aside data and graphs and just think about how energy makes everything in our daily lives possible. Think about your food, water, mode of transportation, and materials that comprise your home and possessions, and think of the role that energy played in providing them. Think about the energy that you use each day in powering your home and in your transportation, even if it is just walking. Then imagine running out of energy. When you flipped on a light switch, nothing happened. When you turned on the tap, no water came out. Your refrigerator stopped working, food deliveries to your community ceased, and no electricity, oil, gas, coal, or even wind or water power was available. Everything in your life would come to a sudden halt. When people have tried to demote energy below spirituality, social relations, or even made it irrelevant to economics, my question is for them to see what they can forego the longest: prayer/meditation, social interaction, sex, or energy. The fossil fuels burned to power industrial civilization provide several hundred energy slaves for each American and no less than hundreds per person in every industrialized nation. All that those energy-leveraged humans do is direct the energy, like holding the reins of a gigantic beast that each person rides each day. Airline pilots half-joke that they begin their workday by strapping jet airliners to their waists. Without that energy to direct in the myriad ways that industrialized humans use it, modern civilization would come to an abrupt end.

100+ Which Plants Can Survive Without Sunlight Grow Lights For Indoor Plants Hgtv,10 Best Perennials For Shade Diy,Growing Cactu

LabBench Activity Plant Pigments and Photosynthesis

In ordinary language, people speak of “producing” or “using” energy. This refers to the fact that energy in concentrated form is useful for generating electricity, moving or heating objects, and producing light, whereas diffuse energy in the environment is not readily captured for practical use. Therefore, to produce energy typically means to convert some stored energy into a desired form—for example, the stored energy of water behind a dam is released as the water flows downhill and drives a turbine generator to produce electricity, which is then delivered to users through distribution systems. Food, fuel, and batteries are especially convenient energy resources because they can be moved from place to place to provide processes that release energy where needed. A system does not destroy energy when carrying out any process. However, the process cannot occur without energy being available. The energy is also not destroyed by the end of the process. Most often some or all of it has been transferred to heat the surrounding environment; in the same sense that paper is not destroyed when it is written on, it still exists but is not readily available for further use.

What do I need to know about the color spectrum of light when growing marijuana indoors

are created by undisturbed organism remains that become saturated with various chemicals, which gradually replace the organic material with rock by . Few life forms ever become fossils but are instead consumed by other life. Rare dynamics lead to fossil formation, usually by anoxic conditions leading to undisturbed sediments that protect the evidence and fossilize it. Scientists estimate that only about 1%-2% of all species that ever existed have left behind fossils that have been recovered. Geological processes are continually creating new land, both on the continents and under the ocean. Seafloor strata do not provide much insight into life’s ancient past, particularly fossils, because the process in “mere” . The basic process is that, in the Atlantic and Pacific sea floors in particular, oceanic volcanic ridges spew out basalt and the plates flow toward the surrounding continents. When oceanic plates reach continental plates, the heavier (basaltic) oceanic plates are subducted below the lighter (granitic) continental plates. Parts of an oceanic plate were more than 100 mya and left behind plate fragments. On the continents, however, as they have floated on the heavier rocks, tectonic and erosional processes have not obliterated all ancient rocks and fossils. The oldest “indigenous” rocks yet found on Earth are . have been dated to 3.5 bya, and fossils of individual cyanobacteria have been dated to 1.5 bya. There are recent claims of finding . The oldest eukaryote fossils found so far are of . The first amoeba-like vase-shaped fossils date from about 750 mya, and there are recent claims of finding the first animal fossils in Namibia, of sponge-like creatures which are . Fossils from might be the first animal fossils, and some scientists think that animals may have first appeared about one bya. The first animals, or , probably descended from . The is a tail-like appendage that protists primarily used to move and it could also be used to create a current to capture food. Flagella were used to draw food into the first animals, which would have been sponge-like. When the first colonies developed in which unicellular organisms began to specialize and act in concert, animals were born, and it is currently thought that the evolution of animals probably only happened . In interpreting the fossil record, there are four general levels of confidence: inevitable conclusions (such as ichthyosaurs were marine reptiles), likely interpretations (ichthyosaurs appeared to give live birth instead of laying eggs), speculations (were ichthyosaurs warm-blooded?), and guesses (what color was an ichthyosaur?).

Garden - How To Information | eHow


Photosynthesis and Food Chains - Sacramento Tree …

Around when Harland first proposed a global ice age, a climate model developed by Russian climatologist concluded that if a Snowball Earth really happened, the runaway positive feedbacks would ensure that the planet would never thaw and become a permanent block of ice. For the next generation, that climate model made a Snowball Earth scenario seem impossible. In 1992, a professor, , that coined the term Snowball Earth. Kirschvink sketched a scenario in which the supercontinent near the equator reflected sunlight, as compared to tropical oceans that absorb it. Once the global temperature decline due to reflected sunlight began to grow polar ice, the ice would reflect even more sunlight and Earth’s surface would become even cooler. This could produce a runaway effect in which the ice sheets grew into the tropics and buried the supercontinent in ice. Kirschvink also proposed that the situation could become unstable. As the sea ice crept toward the equator, it would kill off all photosynthetic life and a buried supercontinent would no longer engage in . Those were two key ways that carbon was removed from the atmosphere in the day's , especially before the rise of land plants. Volcanism would have been the main way that carbon dioxide was introduced to the atmosphere (animal respiration also releases carbon dioxide, but this was before the eon of animals), and with two key dynamics for removing it suppressed by the ice, carbon dioxide would have increased in the atmosphere. The resultant greenhouse effect would have eventually melted the ice and runaway effects would have quickly turned Earth from an icehouse into a greenhouse. Kirschvink proposed the idea that Earth could vacillate between states.