Garden - How To Information | eHow

Energy and the Human Journey: Where We Have Been; …

Growing Duckweed - Missouri Botanical Garden

The position of Antarctica at the South Pole and the landlocked Arctic Ocean have been key variables in initiating the current ice age, and another continental configuration that could contribute to initiating an ice age is , which and . A hypothesis is that can accompany supercontinents, so warm water is not pushed to the poles as vigorously. A supercontinent near the equator would not normally have ice sheets, which means that would be enhanced and remove more carbon dioxide than usual. Those conditions could initiate an ice age, beginning at the poles. It would start out as sea ice, floating atop the oceans. Around when Harland first proposed a global ice age, a climate model developed by Russian climatologist concluded that if a Snowball Earth really happened, the runaway positive feedbacks would ensure that the planet would never thaw and become a permanent block of ice. For the next generation, that climate model made a Snowball Earth scenario seem impossible. In 1992, a professor, , that coined the term Snowball Earth. Kirschvink sketched a scenario in which the supercontinent near the equator reflected sunlight, as compared to tropical oceans that absorb it. Once the global temperature decline due to reflected sunlight began to grow polar ice, the ice would reflect even more sunlight and Earth’s surface would become even cooler. This could produce a runaway effect in which the ice sheets grew into the tropics and buried the supercontinent in ice. Kirschvink also proposed that the situation could become unstable. As the sea ice crept toward the equator, it would kill off all photosynthetic life and a buried supercontinent would no longer engage in . Those were two key ways that carbon was removed from the atmosphere in the day's , especially before the rise of land plants. Volcanism would have been the main way that carbon dioxide was introduced to the atmosphere (animal respiration also releases carbon dioxide, but this was before the eon of animals), and with two key dynamics for removing it suppressed by the ice, carbon dioxide would have increased in the atmosphere. The resultant greenhouse effect would have eventually melted the ice and runaway effects would have quickly turned Earth from an icehouse into a greenhouse. Kirschvink proposed the idea that Earth could vacillate between states. Kirschvink noted that reappeared in the geological record during the possible Snowball Earth times, after vanishing about a billion years earlier. Kirschvink noted that iron cannot increase to levels where they would create BIFs if the global ocean was oxygenated. Kirschvink proposed that the sea ice not only killed the photosynthesizers, but it also separated the ocean from the atmosphere so that the global ocean became anoxic. Iron from volcanoes on the ocean floor would build up in solution during the , and during the greenhouse phase the oceans would become oxygenated and the iron would fall out in BIFs. Other geological evidence for the vacillating icehouse and greenhouse conditions was the formation of cap carbonates over the glacial till. It was a global phenomenon; wherever the Snowball Earth till was, cap carbonates were atop them. In geological circles, deposited during the past 100 million years are considered to be of tropical origin, so scientists think that the cap carbonates reflected a tropical environment. The fact of cap carbonates atop glacial till is one of the strongest pieces of evidence for the Snowball Earth hypothesis. Kirschvink finished his paper by noting that the eon of complex life came on the heels of the Snowball Earth, and scouring the oceans of life would have presented virgin oceans for the rapid spread of life in the greenhouse periods, and this could have initiated the evolutionary novelty that led to complex life.Kirschvink is a , was soon pursuing other interests, and left his Snowball Earth musings behind. Canadian geologist had been an ardent Arctic researcher, but a dispute with a bureaucrat saw him exiled from the Arctic. He landed at Harvard and soon picked Precambrian rocks in to study, as it was largely unexplored geological territory. The Namibian strata were 600-700 million years old, instead of the two billion years that Hoffman was familiar with. In the Namibian desert, he soon found evidence of glacial till among what were considered tropical strata when created.Glacial till is composed of “foreign” stones that had been transported there by ice.

Last Word Archive | New Scientist

Growing Indoor Plants with Success | UGA Cooperative …

"Artificial photosynthesis is a chemical process that replicates the natural process of photosynthesis, a process that converts sunlight, water, and carbon dioxide into carbohydrates and oxygen" Whereas photovoltaics (a method of generating electrical power by converting solar radiation into direct current electricity) can provide direct electrical current from sunlight.

"The genuine process that permits half of the entire photosynthetic reaction to occur is “photo-oxidation”.

With the help of this table, you can obtain the light intensity reading from anywhere in your home

In the classroom, the conversion of sunlight into electricity can be observed in a Grätzel cell, which employs artificial photosynthesis using natural dyes found, for example, in cherries (see ).

WordPress VIP Alternative - RebelMouse