Support or Reject Null Hypothesis in Easy Steps

Hypothesis testing - Handbook of Biological Statistics

Statistical hypothesis testing - Wikipedia

A related criticism is that a significant rejection of a null hypothesis might not be biologically meaningful, if the difference is too small to matter. For example, in the chicken-sex experiment, having a treatment that produced 49.9% male chicks might be significantly different from 50%, but it wouldn't be enough to make farmers want to buy your treatment. These critics say you should estimate the effect size and put a on it, not estimate a P value. So the goal of your chicken-sex experiment should not be to say "Chocolate gives a proportion of males that is significantly less than 50% (P=0.015)" but to say "Chocolate produced 36.1% males with a 95% confidence interval of 25.9 to 47.4%." For the chicken-feet experiment, you would say something like "The difference between males and females in mean foot size is 2.45 mm, with a confidence interval on the difference of ±1.98 mm."

STEPS IN STATISTICAL HYPOTHESIS TESTING

Steps in Statistical Hypothesis Testing

The primary goal of a statistical test is to determine whether an observed data set is so different from what you would expect under the null hypothesis that you should reject the null hypothesis. For example, let's say you are studying sex determination in chickens. For breeds of chickens that are bred to lay lots of eggs, female chicks are more valuable than male chicks, so if you could figure out a way to manipulate the sex ratio, you could make a lot of chicken farmers very happy. You've fed chocolate to a bunch of female chickens (in birds, unlike mammals, the female parent determines the sex of the offspring), and you get 25 female chicks and 23 male chicks. Anyone would look at those numbers and see that they could easily result from chance; there would be no reason to reject the null hypothesis of a 1:1 ratio of females to males. If you got 47 females and 1 male, most people would look at those numbers and see that they would be extremely unlikely to happen due to luck, if the null hypothesis were true; you would reject the null hypothesis and conclude that chocolate really changed the sex ratio. However, what if you had 31 females and 17 males? That's definitely more females than males, but is it really so unlikely to occur due to chance that you can reject the null hypothesis? To answer that, you need more than common sense, you need to calculate the probability of getting a deviation that large due to chance.

Step 1: State the null hypothesis, H 0, and the alternative hypothesis, H a

Sometimes, you’ll be given a proportion of the population or a percentage and asked to support or reject null hypothesis. In this case you can’t compute a test value by calculating a (you need actual numbers for that), so we use a slightly different technique.

Calculate t-test on TI-83 - Cape Fear Community College


How to Calculate P Value: 7 Steps (with Pictures) - …

Notice that the top part of the statistic is the difference between the sample mean and the null hypothesis. The bottom part of the calculation is the standard error of the mean.

08/01/2018 · How to Calculate P Value

In the figure above, I used the to calculate the probability of getting each possible number of males, from 0 to 48, under the null hypothesis that 0.5 are male. As you can see, the probability of getting 17 males out of 48 total chickens is about 0.015. That seems like a pretty small probability, doesn't it? However, that's the probability of getting exactly 17 males. What you want to know is the probability of getting 17 or fewer males. If you were going to accept 17 males as evidence that the sex ratio was biased, you would also have accepted 16, or 15, or 14,… males as evidence for a biased sex ratio. You therefore need to add together the probabilities of all these outcomes. The probability of getting 17 or fewer males out of 48, under the null hypothesis, is 0.030. That means that if you had an infinite number of chickens, half males and half females, and you took a bunch of random samples of 48 chickens, 3.0% of the samples would have 17 or fewer males.

Lesson 12: Hypothesis Testing for a Population Mean

After you do a statistical test, you are either going to reject or accept the null hypothesis. Rejecting the null hypothesis means that you conclude that the null hypothesis is not true; in our chicken sex example, you would conclude that the true proportion of male chicks, if you gave chocolate to an infinite number of chicken mothers, would be less than 50%.

Understanding Statistical Power and Significance …

where the observed sample mean difference, μ0 = value specified in null hypothesis, sd = standard deviation of the differences in the sample measurements and n = sample size. For instance, if we wanted to test for a difference in mean SAT Math and mean SAT Verbal scores, we would random sample subjects, record their SATM and SATV scores in two separate columns, then create a third column that contained the differences between these scores. Then the sample mean and sample standard deviation would be those that were calculated on this column of differences.