Biosynthesis of nanoparticles is reviewed in detail in this study

Synthesis of nanoparticles from plants ppt ..
Photo provided by Flickr

Biosynthesis of Silver Nanoparticles by Aspergillus - …

The present study deals with the extracellular biosynthesis of silver nanoparticles, using cell-free extract of phytopathogenic soil-borne fungus Macrophomina phaseolina (Tassi) Goid, the causal organism of charcoal rot disease of about 500 agronomical important crops all over the world []. It describes not only a new method of green synthesis of silver nanoparticles but also their physical attributes, antibacterial activity against human and plant pathogenic multidrug-resistant bacteria, the inhibitory effect on the growth kinetics of microbes, the capping material around the silver nanoparticles, as well as their genotoxic effect.

biosynthesis of silver nanoparticles by
Photo provided by Flickr

green synthesis of nanoparticles from plant extract ppt

In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2θ values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA.

Fate and Effects of Nanoparticles in Lungs PPT ..
Photo provided by Flickr

In this study, phytopathogenic fungus M. phaseolina (Tassi) Goid was used for the first time for the extracellular biosynthesis of silver nanoparticles by bioreduction of aqueous Ag+ion. SEM, TEM, and AFM were used to study the morphology, concentration, and size of biosynthesized nanoparticles. The silver nanoparticles exhibited distinct antimicrobial property on multidrug-resistant human and plant pathogenic bacteria. An 85-kDa protein present in the extracellular solution was responsible for synthesis and capping of nanoparticles. This eco-friendly, cost-effective extracellular biosynthesis of naturally protein-capped silver nanoparticles with potent antimicrobial activities from the phytopathogenic fungus has the potential to be utilized on a large scale for widespread industrial or medical application.

Báo cáo " Synthesis and characterisation of metallic nanoparticles " ppt
Photo provided by Flickr