Energy and the Human Journey: Where We Have Been; …

List of firms that have invested in energy companies or are taking time to investigate the space

What Is the Importance of Chlorophyll for Photosynthesis?

Carbon has two primary stable isotopes: and . is the famous unstable isotope used for dating recently deceased life forms, but testing carbon’s stable isotopes has yielded invaluable information. is the backbone of all of life’s structures, and life processes often have a preference for using carbon-12, which is lighter than carbon-13 and hence take less energy to manipulate. Scientists have been able to test rocks in which the “fossils” are nothing more than smears and determine that those smears resulted from life processes, as there is more carbon-12 in the smear than carbon-13 than would be the case if life was not involved. This has also helped date the earliest life forms. Life’s preference for lighter isotopes is evident for other key elements such as sulfur and nitrogen, and scientists regularly make use of that preference in their investigations.

Glossary of Biological Terms ← BACK

Amezcua Bio Disc 2 + Amezcua Chi Pendant 2

Just as were “invented,” somewhere between 1.6 bya and 600 mya a eukaryote ate a cyanobacterium and both survived, and that cyanobacterium became the ancestor of all chloroplasts, which is the photosynthetic organelle in all plants. As with similar previous events, it appears that it , and all plants are descended from that unique event. The invention of the chloroplast , which were the first plants. The first algae fossils are from about 1.2 bya. Most algae species are not called plants, as they are not descended from that instance when a eukaryote ate a cyanobacterium. The non-plant algae, such as , also have chloroplasts, from various “envelopment” events when algae chloroplasts were eaten and the grazers and chloroplasts survived. Below is the general outline of the tree of life today, in which bacteria and archaea combined to make eukaryotic cells, and in which the bacterium enveloped into a protist to make plants, and all complex life developed from protists. (Source: Wikimedia Commons)

Drink water treated with the Amezcua Bio Disc 2 to increase your harmony and energy levels

Trees first appeared during a plant diversity crisis, and the arrival of seed plants and ferns ended the dominance of the first trees, so the plant crises may have been more about evolutionary experiments than environmental conditions, although a carbon dioxide crash and ice age conditions would have impacted photosynthesizers. The that gave rise to trees and seed plants largely went extinct at the Devonian’s end. But what might have been the most dramatic extinction, as far as humans are concerned, was the impact on land vertebrates. During the about 20% of all families, 50% of all genera, and 70% of all species disappeared forever.

Human Knowledge: Foundations and Limits


Everyone knows that the sun is needed for photosynthesis and heat

Around when Harland first proposed a global ice age, a climate model developed by Russian climatologist concluded that if a Snowball Earth really happened, the runaway positive feedbacks would ensure that the planet would never thaw and become a permanent block of ice. For the next generation, that climate model made a Snowball Earth scenario seem impossible. In 1992, a professor, , that coined the term Snowball Earth. Kirschvink sketched a scenario in which the supercontinent near the equator reflected sunlight, as compared to tropical oceans that absorb it. Once the global temperature decline due to reflected sunlight began to grow polar ice, the ice would reflect even more sunlight and Earth’s surface would become even cooler. This could produce a runaway effect in which the ice sheets grew into the tropics and buried the supercontinent in ice. Kirschvink also proposed that the situation could become unstable. As the sea ice crept toward the equator, it would kill off all photosynthetic life and a buried supercontinent would no longer engage in . Those were two key ways that carbon was removed from the atmosphere in the day's , especially before the rise of land plants. Volcanism would have been the main way that carbon dioxide was introduced to the atmosphere (animal respiration also releases carbon dioxide, but this was before the eon of animals), and with two key dynamics for removing it suppressed by the ice, carbon dioxide would have increased in the atmosphere. The resultant greenhouse effect would have eventually melted the ice and runaway effects would have quickly turned Earth from an icehouse into a greenhouse. Kirschvink proposed the idea that Earth could vacillate between states.

Energy and the Human Journey: Where We Have …

During that “,” , , and the rise of grazing and predation had eonic significance. While many critical events in life’s history were unique, one that is not is multicellularity, , and some prokaryotes have multicellular structures, some even with specialized organisms forming colonies. There are , but the primary advantage was size, which would become important in the coming eon of complex life. The rise of complex life might have happened faster than the billion years or so after the basic foundation was set (the complex cell, oxygenic photosynthesis), but geophysical and geochemical processes had their impacts. Perhaps most importantly, the oceans probably did not get oxygenated until just before complex life appeared, as they were sulfidic from 1.8 bya to 700 mya. Atmospheric oxygen is currently thought to have remained at only a few percent at most until about 850 mya, although there are recent arguments that it remained low until only about 420 mya, when large animals began to appear and animals began to colonize land. Just as the atmospheric oxygen content began to rise, then came the biggest ice age in Earth’s history, which probably played a major role in the rise of complex life.